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Abstract 

 
Calcium images has been used in biological science for various reasons, but in this study, we are 
focus on the usefulness of them to represent physiological changes in the cell or tissue that it is 
being studied. The study of these images grants great insight of what is happening in the system 
that we are studying, this is why several analysis techniques have been developed in the past 
years. In this research, we have developed a pipeline for the analysis of calcium images that uses 
different programs to generate the extraction of different features that describe the behavior of 
the tissue that is being studied in a quantitative way. The first software used is called CaImAn 
and is used to generate the motion correction and source extraction of the calcium images. 
Following this step, the calcium profile is extracted and analyzed with SciPy. The pipeline shows 
great performance, and the capability to generate figures to communicate the data generated, 
all of this in a highly automated way, where only a few parameters have to be tunned by the 
user.  
 
Palabras clave: Calcium imaging, Image analysis, Calcium signaling, Feature extraction, Automated 

analysis. 

 

 

1. Introduction  

 

Many processes that occur within the cell use calcium (Ca+2) as second messenger, for example 

cell division, growth and death present an underlying calcium dynamic that guides this process 
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(Berridge et al., 2000). The cells can encode intercellular and intracellular signals in Ca+2 signals, 

this signals are characterized by their amplitude, frequency and integrated intensity (Berridge, 

1997; Clapham, 2007). For this reason, it is important to study the calcium expression of the cell 

to understand the effect of certain environmental conditions on the cellular dynamic represented 

by the calcium signals, changes in the characteristics of the signals may represent the changes of 

different physiological aspects of the cell. This could help us to tuned the cells to do what we want 

from the calcium signals, for example tunned the signals to modulate organ size (Soundarrajan et 

al., 2021). Thanks to technologies like the fluorescent probe GCaMP6f the imaging of the dynamics 

of Ca+2 is possible, revealing interesting dynamics like oscillations, spikes and waves of Ca+2 (Gu et 

al., 1994; Politi et al., 2006; Sanchez et al., 2021; Soundarrajan et al., 2021). In addition to this, 

recent microscopy insights allow us to see the calcium dynamics in great detail, this is important 

as the study of this dynamics contain great information of what is happening in the cell; is worth 

mentioning that recent technologies have allowed us to see this dynamic in vivo (Friedrich et al., 

2021; Stosiek et al., 2003). 

 

The great amount of data generated from the imaging of calcium dynamics creates the necessity 

of the development of analysis technologies to extract quantitative data from them. In the recent 

years various algorithms for this analysis have been developed, and many implementations have 

appeared. Algorithms like constrained non-negative matrix factorization (CNMF) and its extended 

version for 1-photon microscopes (CNMF-E) are used by calcium imaging software to extract the 

fluorescent profile of the calcium signals (Pnevmatikakis et al., 2016; Zhou et al., 2018). The most 

used calcium image analysis software are Calcium Image Analysis (CaImAn)(Giovannucci et al., 

2019), miniscope 1-photon imaging signal extraction pipeline (Min1pipe) (Lu et al., 2018), 

EZcalcium (Cantu et al., 2020) and CytoNet (Mahadevan et al., 2022), being CaImAn the most 

relevant one shown by the great amount of citations and stars in its GitHub profile. From these 

software we can extract many features, but the most important one is the fluorescent profile of 

the Regions of Interest (ROIs) identified by the software, in figure 1 you can see the input and 
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output schema of the analysis tools, also CytoNet generates an analysis of the cellular community 

that is captured by the image.  

 

Even though these software we can extract the fluorescent profile, none of these generates a 

robust mathematical analysis of the profile. In this work we present a calcium image analysis 

pipeline, using CaImAn to extract the fluorescent profile and the softwares SciPy, Numpy, scikit-

learn and Matplotlib for mathematical analysis and visualization (Harris et al., 2020; Hunter, 2007; 

Pedregosa et al., 2011; Virtanen et al., 2020). This pipeline has been tested by analyzing calcium 

images provided by Zartman Lab probing the usefulness of this tool. 

 

In this document the analysis is going to be done in images of an experiment of the effect of Yoda1 

in the Piezo1 channels. Piezo1 is a mechanosensitive non-selective calcium channel, this means 

that is a channel for calcium that is activated by mechanical force imposed on it (Liao et al., 2021; 

Volkers et al., 2015). And the drug Yoda1 that activates the Piezo1 channels without the necessity 

of the mechanical activation, generating an influx of calcium to the cell without imposing a 

mechanical stress in the Piezo1 channel(Botello-Smith et al., 2019). 
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Figure 1: Input and output representation of the different software. a) EZcalcium: The input of 
this software is a .tif stack containing the microscopy video and the output is the image with 
the ROIs recognized and the fluorescent profile of the signals of each ROIs with a .mat file that 
contains the information extracted. b) CytoNet: The input of this software is a .tif stack 
containing the microscopy video and the output the cellular community analysis done by the 
software. c) CaImAn: The input of this software is a .tif stack containing the microscopy video 
and the output is the image with the ROIs recognized and the fluorescent profile of the signals 
of each ROIs, from the output more information can be extracted, for example the data 
containing the numerical information of the fluorescent profile. 
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2. Methodology 

 

The pipeline generated was developed in the environment Google Colab (Bisong, 2019). Figure 2 

represents the pipeline by a flow chart. 

 

In the following sections we are going to present the pipeline in the order in which is run.  

2.1. Initial configurations 

The first step of the pipeline is the installation of the required packages and the importation of 

them to the environment. 

 
Figure 2: The workflow of the pipeline can be summarized by this flow chart. The software 
used is listed in the image too. The pipeline was implemented in a .ipynb file using Google 
Colab, by doing this we take advantage of the shareability of this application. The flowchart 
was generated with Lucidchart (Faulkner, 2018) 
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!pip install git+https://github.com/flatironinstitute/CaImAn.git --quiet # 

installation of the package from github 

# installation of the packages that this package depends on 

!pip install pims --quiet  

!pip install pynwb --quiet 

!pip install ipyparallel --quiet 

!pip install peakutils --quiet 

try: 

    (magic_name, parameter_s).get_ipython().magic(u'load_ext autoreload') 

    (magic_name, parameter_s).get_ipython().magic(u'autoreload 2') 

    (magic_name, parameter_s).get_ipython().magic(u'matplotlib qt') 

except: 

    pass 

 

import logging 

import matplotlib.pyplot as plt 

import numpy as np 

import glob 

import scipy 

from scipy.special import logsumexp 

import caiman as cm 

from caiman.source_extraction import cnmf 

from caiman.utils.utils import download_demo 

from caiman.utils.visualization import inspect_correlation_pnr, 

nb_inspect_correlation_pnr 

from caiman.motion_correction import MotionCorrect 

from caiman.source_extraction.cnmf import params as params 

from caiman.utils.visualization import plot_contours, nb_view_patches, nb_plot_contour 

from caiman.paths import caiman_datadir 

import cv2 

from skimage.restoration import denoise_wavelet 

import tifffile 

import io 

import base64 

from IPython.display import HTML 

import os 

 

from mpl_toolkits import mplot3d 

 

try: 

    cv2.setNumThreads(0) 

except: 

    pass 

 

# these packages will help us to plot the reults. of the analysis 
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import bokeh.plotting as bpl 

import holoviews as hv 

bpl.output_notebook() 

hv.notebook_extension('bokeh') 

 

Thanks to be working in Google Colab we can access the files in our Google Drive, this is a great 

advantage because in this way the files are stored in the cloud rather than in the physical storage 

of the computer, saving memory for other type of files. To connect to Google Drive the following 

code has to be run. 

from google.colab import drive 

drive.mount('/content/drive') 

 

Once initiated the connection with Google Drive, we must define the path to the file that is going 

to be analyzed, and the path to the folder that contains said file. 

names = ['path_to_file'] # this variable tells the program where the file is. It is a 

list, so if you want to upload one video, you have to  

                          # put one path in the list 

path_to_model = 'path_to_folder' # this variable stores the path to the folder which 

stores the video file. It is also the folder that will store the .mmap files 

 

The large number of calculations that the software has to do in order to run the analysis, the usage 

of parallel computing is needed. In this paradigm the large work is divided in small works that can 

be solved by parallel processor (Asanovic et al., 2009). To star this process a cluster must be 

started, to do this we use the following function: 

# the following code will generate the cluster and will close any pre-existing 

cluster, initiating a new one. 

 

if 'dview' in locals(): 

    cm.stop_server(dview=dview) 

c, dview, n_processes = cm.cluster.setup_cluster( 

    backend='local', n_processes=None, single_thread=False) 

 

2.2. Motion Correction 
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The first part of the process of image analysis is the motion correction of the images. In this process 

the motion that the image has due to the movement of the sample is corrected by different 

algorithms. The algorithm used by the CaImAn package is NoRMCorre (Pnevmatikakis & 

Giovannucci, 2017). Before running this algorithm, we first have to define the parameters of it. 

# Parameters which are dependent of the data set 

frate = 10                       # The rate of the movie frames 

decay_time = 0.4                 # This is the lenght of the transient, the units are 

seconds 

 

# Parameters of the motion correction process 

motion_correct = True    # This will flag the performing motion correction 

pw_rigid = False         # This is a flag for the  performing piecewise-rigid motion 

correction (otherwise just rigid) 

gSig_filt = (3, 3)       # This is the size of high pass spatial filtering, it is used 

when we are working with 1p data 

max_shifts = (5, 5)      # This parameter marks the maximum allow rigid shift 

strides = (48, 48)       # Is going to start a new patch of pw-rigid motion correction 

every x pixels 

overlaps = (24, 24)      # Quantifies the overlap of patches(size of patch 

strides+overlaps) 

max_deviation_rigid = 3  # Indicates the maximun deviation allow for a patch with 

respect to rigid shift 

border_nan = 'copy'      # Indicates the replication along the border 

splits_rig = 10          #  

shifts_opencv = True  # flag for correcting motion using bicubic interpolation 

(otherwise FFT interpolation is used) 

# Now we store all the paremeters in a dictionary 

mc_dict = { 

    'fnames': fnames, # note that here we pass the file path 

    'fr': frate, 

    'decay_time': decay_time, 

    'pw_rigid': pw_rigid, 

    'max_shifts': max_shifts, 

    'gSig_filt': gSig_filt, 

    'strides': strides, 

    'overlaps': overlaps, 

    'max_deviation_rigid': max_deviation_rigid, 

    'border_nan': border_nan, 

    'splits_rig': splits_rig, 

    'path_to_model': path_to_model, # here we pass tha path to the model's folder 

    'shifts_opencv': shifts_opencv 

} 
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# Finally we store the parameters in an object, this object is going to be read by the 

program 

opts = params.CNMFParams(params_dict=mc_dict) 

 

Once the parameters are set, the motion correction algorithm is run. 

# If the motion_correct is True then the correction is going to be performed 

if motion_correct: 

  # thus is the cored that will perform the correction 

    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion')) 

    mc.motion_correct(save_movie=True) 

    fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig 

    if pw_rigid: 

        bord_px = np.ceil(np.maximum(np.max(np.abs(mc.x_shifts_els)), 

                                     np.max(np.abs(mc.y_shifts_els)))).astype(int) 

    else: 

        bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(int) 

        # With this we can plot the result 

        plt.subplot(1, 2, 1); plt.imshow(mc.total_template_rig)  # % plot template 

        plt.subplot(1, 2, 2); plt.plot(mc.shifts_rig)  # % plot rigid shifts 

        plt.legend(['x shifts', 'y shifts']) 

        plt.xlabel('frames') 

        plt.ylabel('pixels') 

    # This is going to create the memory map that will store the motion corrected 

video 

    bord_px = 0 if border_nan == 'copy' else bord_px 

    fname_new = cm.save_memmap(fname_mc, base_name='memmap_', order='C', 

                               border_to_0=bord_px) 

else: # If motion_correct if false, then the video is only going to be stored 

      # as a .mmap file 

    fname_new = cm.save_memmap(fnames, base_name='memmap_', 

                               order='C', border_to_0=0, dview=dview) 

 

Finally, we save the motion corrected image in a memory map (.mmap file) to use it later in the 

source extraction step. 

# load memory .mmap file 

Yr, dims, T = cm.load_memmap(fname_new) 

images = Yr.T.reshape((T,) + dims, order='F') 

 

2.3. Source Extraction 
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Source extraction refers to the process in which the Regions of Interest are detected by ROI 

detection algorithms, in this case the algorithm is GreedyCorr (Zhou et al., 2018). Then the 

fluorescent profile of these regions is extracted, in this case using the CNMF-E algorithm. In this 

process a fine tuning of the parameters of the CNMF algorithm has to be done to generate an 

extraction that fits what is seen in the images. For this process, the amount of noise that the image 

contains needs to be analyzed, a good way to do this is using the “Plot Z-axis profile” available in 

the image analysis software ImageJ. 

 

Before the algorithm of is run, the parameters of it have to be defined, to do this the following 

code block has to be run. The description of these parameters is defined in the commentaries of 

the code. 

# Set of paremeters that will define the source extraction and deconvolution 

p = 1               # This defines the order of the autoregressive system 

K = None            # This defines the upper limit of the number of components per 

patch, in general this parameter is define as None 

gSig = (3, 3)       # Gaussian width of a 2D gaussian kernel, this approximates a 

neuron 

gSiz = (13, 13)     # average diameter of a neuron, is useful to define it as 4*gSig+1 

Ain = None          # The possibility to seed the analysis with a binary mask 

merge_thr = .7      # merging threshold, this threshold is defined as the maximum 

correletion 

rf = 40             # half-size of the patches in pixels. e.g., if rf=40, patches are 

80x80 

stride_cnmf = 20    # amount of overlap between the patches in pixels 

#                     (keep it at least large as gSiz, i.e 4 times the neuron size 

gSig) 

tsub = 2            # downsampling factor in time for initialization, 

#                     increase if you have memory problems 

ssub = 1            # downsampling factor in space for initialization, 

#                     increase if you have memory problems 

#                     you can pass them here as boolean vectors 

low_rank_background = 2  # None leaves background of each patch intact, 

#                     True performs global low-rank approximation if gnb>0 

gnb = 2             # number of background components (rank) if positive, 

#                     else exact ring model with following settings 

#                         gnb= 0: Return background as b and W 

#                         gnb=-1: Return full rank background B 

#                         gnb<-1: Don't return background 
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nb_patch = 2        # number of background components (rank) per patch if gnb>0, 

#                     else it is set automatically 

 

# the following parameters will help you to optimze the image analysis 

# if the image is too noisy is recommendable to lower the paremters  

# if there are too many regions of interst (ROI) is recommendable to increase this 

values 

min_corr = 0.9      # min peak value from correlation image 

min_pnr = 0.9        # min peak to noise ration from PNR image, This value should be 

grater than 1  

                    # to have more signal than noise. This is because the ratio is 

signal/noise 

                    # So values bigger than 1 express profiles where the signal is 

more intense than the  

                    # noise generated by the image it self 

 

# this parameter is used to analyze the sample further more and optimze even more the 

ROIs,  

# is not always advisable to increase it so much, 2 is a good number 

ssub_B = 2          # additional downsampling factor in space for background 

 

# this parameter defines the ring size of the ROIs 

ring_size_factor = 1  # radius of ring is gSiz*ring_size_factor 

 

# now we change the paramters stored in the previous object created for the motion 

correction 

# algorithm 

opts.change_params(params_dict={'method_init': 'corr_pnr',  # use this for 1 photon 

                                'K': K, 

                                'gSig': gSig, 

                                'gSiz': gSiz, 

                                'merge_thr': merge_thr, 

                                'p': p, 

                                'tsub': tsub, 

                                'ssub': ssub, 

                                'rf': rf, 

                                'stride': stride_cnmf, 

                                'only_init': True,    # set it to True to run CNMF-E 

                                'nb': gnb, 

                                'nb_patch': nb_patch, 

                                'method_deconvolution': 'oasis',       # could use 

'cvxpy' alternatively 

                                'low_rank_background': low_rank_background, 

                                'update_background_components': True,  # sometimes 

setting to False improve the results 

                                'min_corr': min_corr, 
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                                'min_pnr': min_pnr, 

                                'normalize_init': False,               # just leave as 

is 

                                'center_psf': True,                    # leave as is 

for 1 photon 

                                'ssub_B': ssub_B, 

                                'ring_size_factor': ring_size_factor, 

                                'del_duplicates': True,                # whether to 

remove duplicates from initialization 

                                'border_pix': bord_px})                # number of 

pixels to not consider in the borders) 

 

Before running the source extraction algorithm, we can inspect the parameters defined to see if 

everything is in order. 

# with this function we generate some summary of the image (correlation and peak to 

noise ratio) 

cn_filter, pnr = cm.summary_images.correlation_pnr(images[::1], gSig=gSig[0], 

swap_dim=False) # change swap dim if output looks weird, it is a problem with tiffile 

# inspect the summary images and set the parameters 

nb_inspect_correlation_pnr(cn_filter, pnr) 

 

To run the algorithm the following code has to be run. This algorithm might take some time, but 

the analysis generates a variety of ROIs with high quality. 

# the following code block runs the algorithm 

 

cnm = cnmf.CNMF(n_processes=n_processes, dview=dview, Ain=Ain, params=opts) 

cnm.fit(images) 

 

To filter the quality of the profile extracted the following code must be run.  

# parameters that will filter the components identified 

# You can change this parameters in order to change the number of componentes accepted 

min_SNR = 3            # adaptive way to set threshold on the transient size 

r_values_min = 0.3    # threshold on space consistency (if you lower more components 

#                        will be accepted, potentially with worst quality). The higher 

the value 

                      # the higher the probability of the component to be a neuron. 

                      # So if the cells are very different from neuron the value 

should be lower 
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cnm.params.set('quality', {'min_SNR': min_SNR, 

                           'rval_thr': r_values_min, 

                           'use_cnn': False}) 

# this will generates the filtering of componentes 

cnm.estimates.evaluate_components(images, cnm.params, dview=dview) 

 

# now we can see how many of them were identified and how meny where accepted 

print(' ***** ') 

print('Number of total components: ', len(cnm.estimates.C)) 

print('Number of accepted components: ', len(cnm.estimates.idx_components)) 

 

This code will output the number of components detected by the CNMF-E algorithm and the 

number of components that were accepted after being filtered. 

 

Finally, the 𝐹/ΔF profile can be extracted using the following code block. 

cnm.estimates.detrend_df_f(quantileMin=8, frames_window=250) 

 

# If you get the error "RuntimeError: invalid percentile" change the values of the 

parameters of the function, 

# but not go to far from the defoult values 

 

 2.4. Mathematical Analysis 

 

The mathematical analysis developed to extract important mathematical features of the calcium 

signals. The features extracted are the number of peaks, the width of half maximum, height of the 

peak and the frequency of oscillation of the calcium signals. The code developed for this part relies 

strongly in mathematical analysis software like SciPy (Virtanen et al., 2020) and numpy (Harris et 

al., 2020), for the visualization features of the functions generated use the package Matplotlib for 

the generation of the figure (Hunter, 2007).  

 

The functions generated can be found in the following code block: 

 

 

##### function that generates the amount of peaks of the signal 
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def generate_peaks(graph, height=0, plot=False, number=False, distance = 1 ): 

  ''' 

  input: 

  graph : nd.array 

          the nd.array that stores the temporal values of the DF/F profile 

  height: int 

          indicates the minimal required to interpretate as a signal  

  plot: bool 

        Indicates whether you like to output the plot of the peaks and signal or not 

  number: bool 

          Indicate whether you like to output the number of peaks or not 

  distance: int 

            This parameters define the distance of the peaks in order to consider them 

as peaks. 

            for example, if we consider [0,0,0,4,0,8] 

            if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not  

            considered as a peak, because at a distance of 2 is other number higher 

than 4. 

  output: 

  n_peaks: int 

           the number of peaks of the graph in the timeframe of evaluation 

  ''' 

   

  # we extract the peaks using the function of scipy 

  peaks,_= scipy.signal.find_peaks(graph, height=height , distance = distance) 

  # calculate the length of the array of peaks in order to know the quantity of them 

  n_peaks = len(peaks) 

  # now we plot a graph containing the peaks detected 

  if plot == True: 

    plt.figure() 

    plt.plot(graph) 

    plt.plot(peaks, graph[peaks],"x") 

  # if number is true you can have a string saying the number of peaks 

  if number==True: 

    print("the number of peaks is "+ str(n_peaks)) 

  return n_peaks 

###### function that generates the seconds and images of the system 

# 

def seconds_images(fname): 

  ''' 

  input: 

   

  fname: string 

         a string containing the path to the .tif file to analyze 

  output: 

  seconds_interval: int 

                    The amount of seconds between to frames 

  n_images: int 

            The amoun of images in the .tif file 

   

  seconds: int 

           the length of the video in seconds 

  considerations: 

    for a better analysis make sure that your .tif file contains in its metadata 

    the interval of seconds between each frame, or in the frames are labeled as the  

    second in which it was taken. Other types of metadata cannot be analyze due to the 

    lack of the temporal parameter. 

  ''' 
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  with tifffile.TiffFile(fname) as tif: # we read the tiff file of the images to 

extract the seconds interval 

    volume = tif.asarray() 

    axes = tif.series[0].axes 

    imagej_metadata = tif.imagej_metadata 

   

  keys_metadata= list(imagej_metadata.keys()) 

   

  # if the .tif file stores the amount of seconds between images 

  if'finterval' in keys_metadata: # if the metadata contains the interval between the 

frames 

    seconds_interval=imagej_metadata['finterval'] # the seconds between two frames 

    n_images=imagej_metadata['images'] 

    return seconds_interval, n_images 

  # if the .tif file stores the seconds that took to take the video as labels of the 

images 

  else:  # if the label of the metadata frames contains the amount of seconds that 

took 

         # to take the pictures 

    labs = imagej_metadata['Labels'] 

    seconds = labs[-1].strip(' s') 

    seconds_interval = float(labs[1].strip(' s'))-labs[0].strip(' s') 

    n_images = imagej_metadata['images'] 

    return seconds_interval, n_images 

   

   

   

####### this function generates the frequency of peaks of the signal 

def generate_frequency(graph, sec_img,height=0, distance = 1): 

  ''' 

  input: 

  graph : nd.array 

          the nd.array that stores the temporal values of the DF/F profile 

  sec_img: tuple 

           tuple that contains the seconds between two frames and the total images 

           in the .tif file 

  height: int 

          indicates the minimal required to interpretate as a signal 

 distance: int 

           This parameters define the distance of the peaks in order to consider them 

as peaks. 

           for example, if we consider [0,0,0,4,0,8] 

           if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not  

           considered as a peak, because at a distance of 2 is other number higher 

than 4. 

  output: 

  frequency: int 

             the frequency of the peaks 

  ''' 

  # ways to extract and calculate the duration of the calcium image video 

  if len(sec_img) == 2: 

    duration = sec_img[0] * (sec_img[1]-1) # calculate the duration of the video 

  if len(sec_img) == 1: 

    duration = float(sec_img[0]) 

  # generate the number of peaks in order to calculate the frequency 

  n_peaks = generate_peaks(graph,height=height, plot=False, number=False, distance = 

distance) 

  # formula for the number of peaks, this is in peaks/seconds 
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  frequency= n_peaks/duration 

  return frequency 

###### this function generates the average height of the peaks in the signal 

expression 

def generate_average_hpeak(graph, height=0, distance = 1): 

  ''' 

  input: 

  graph : nd.array 

          the nd.array that stores the temporal values of the DF/F profile 

  height: int 

          indicates the minimal required to interpretate as a signal 

  distance: int 

            This parameters define the distance of the peaks in order to consider them 

as peaks. 

            for example, if we consider [0,0,0,4,0,8] 

            if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not  

            considered as a peak, because at a distance of 2 is other number higher 

than 4. 

           

  output: 

  average: int 

             The average height of the calcium peaks 

  ''' 

  # we extract the properties of the peaks using the function of scipy 

  peaks,properties= scipy.signal.find_peaks(graph, height=height, distance = distance) 

  height_peaks = properties['peak_heights'] 

  # we calculate the average height of the peaks 

  average= np.mean(height_peaks) 

  return average 

#### this function generates the width of the half of the peak 

def generate_whm(graph, sec_img,height=0,distance = 1,plot=False): 

  ''' 

  input: 

  graph : nd.array 

          the nd.array that stores the temporal values of the DF/F profile 

  height: int 

          indicates the minimal required to interpretate as a signal 

  distance: int 

           This parameters define the distance of the peaks in order to consider them 

as peaks. 

           for example, if we consider [0,0,0,4,0,8] 

           if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not  

           considered as a peak, because at a distance of 2 is other number higher 

than 4. 

           

  output: 

  whm: nd.array 

       indicates the whm of the peaks 

  ''' 

  # we extract the properties of the peaks, between them the weight 

  peaks,properties= scipy.signal.find_peaks(graph, height=height, distance = distance) 

  # we extract the width of the peaks 

  width_peak=scipy.signal.peak_widths(graph, peaks,rel_height=0.5) 

  # if there are no peaks, we define the width as 0 

  if len(peaks) == 0: 

    whm = [0] 

  else: 

    whm = width_peak[0] 
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  # plot the profile with the width of the medium height 

  if plot==True: 

    results_half = scipy.signal.peak_widths(graph, peaks, rel_height=0.5) 

    plt.figure() 

    plt.plot(graph) 

    plt.plot(peaks, graph[peaks], "x") 

    plt.hlines(*results_half[1:], color="C2") 

  whm = np.array(whm) * float(sec_img[0]) 

  return whm 

# this function generates the analysis of the fluorescent expression of the  

# components of the tissue 

def analyze_df_f(spatial_components,  fname, initial_idx=0, final_idx=0, idx_comp=[], 

height = 0, distance = 1,idx = 'all' ): 

  '''  

  input: 

   

  spatial_components: nd.array 

                      an nd.array which contains the graphs of the DF_F profile 

  fname: string 

         string containing the path to the .tif file to analyze 

  initial_idx: int 

               intial component of the interval to analyze. Only use if idx == 

'interval' 

  final_idx: int 

             final component of the interval to analyze. Only use if idx == 

'interval',  

             containing this last one 

  idx_comp: list 

            list of the indexes of the components to analyze 

            if you want the component number i use i as input 

  height: int 

          indicates the minimal required to interpretate as a signal 

  distance: int 

            This parameters define the distance of the peaks in order to consider them 

as peaks. 

            for example, if we consider [0,0,0,4,0,8] 

            if distance is 1: 4 is considered a peak. But if distance is 2: 4 is not  

            considered as a peak, because at a distance of 2 is other number higher 

than 4. 

  idx: string 

       indicate the interval type of the components  

          'all': Analize all the components 

          'interval': indicate the interval of components to analyze. If this is 

                      the case indicate the initial and final component index.  

          'specific': indicate the specific number of the components to analyze. 

  output: 

   

  analysis: dict 

            a nested dictionary that indicates the parameters of each component 

            'numnumber_of_peaks': number of peaks in the time frame 

            'fraquency_of_peaks': frequency of the peaks over the time 

            'whm_of_peaks': whm of the peaks 

            'peaks_average_height': the average height of the peaks 

  ''' 

  analysis=dict() 

  sec_image=seconds_images(fname) 

   

  # we generate a different array of index in order to analyse the desire components 
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  if idx == 'all': 

    index = range(len(spatial_components)) 

  elif idx == 'interval' and (bool(initial_idx)or initial_idx==0) and bool(final_idx) 

: 

    index = range(initial_idx, final_idx+1)  

  elif idx == 'specific' and bool(idx_comp): 

    index = np.array(idx_comp)-1 

############## analysis loop ############## 

  for i in index: 

    # we generate the analysis for each component extracted 

    graph=spatial_components[i] 

    n_peaks=generate_peaks(graph,height=height, distance = distance) 

    freq=generate_frequency(graph,sec_image,height=height, distance = distance) 

    peak_whm=generate_whm(graph,sec_img = sec_image,height=height) 

    peak_aver=generate_average_hpeak(graph, height = height , distance = distance) 

    results={'number_of_peaks': n_peaks,  

            'frequency_of_peaks': freq, 

            'whm_of_peaks':peak_whm, 

            'peaks_average_height':peak_aver} 

    analysis[i+1]=results 

  return analysis 

#### this function generates the average of the parameters calculates by the  

#### function analyze_df_f 

def average_parameters(dict_results): 

  ''' 

  input: 

  dict_results: dict 

                dictionary containing the information of each cell identified by the 

analysis tool.  

  output: 

   

  out: dict 

       dictionary containing the information asked, it has the average resul of the 

       parameters calculated by the function analyze_df_f 

       outpus: 

          average_number_of_peaks 

          verage_frequency_of_peaks 

          average_whm_of_peaks 

          average_average_heigh_of_peaks 

  ''' 

  # define the initial variables in order to found out the total of them 

  num_peaks = 0 

  freq_peaks = 0 

  whm_of_peaks = 0 

  hg_peaks = 0 

  comps=len(dict_results) 

  for i in range(len(dict_results)): 

    # we run through every component in the results dictionary 

    num_peaks+=dict_results[i+1]['number_of_peaks'] 

    freq_peaks += dict_results[i+1]['frequency_of_peaks'] 

    whm_of_peaks += 

logsumexp(dict_results[i+1]['whm_of_peaks'])/len(dict_results[i+1]['whm_of_peaks']) 

    hg_peaks += dict_results[i+1]['peaks_average_height'] 

  # the output is made of the average number, taking in consideration the total 

extracted before 

  out = {'average_number_of_peaks':num_peaks/comps,  

          'average_frequency_of_peaks':freq_peaks/comps, 

          'average_whm_of_peaks':whm_of_peaks/comps, 
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          'average_average_heigh_of_peaks':hg_peaks/comps} 

  return out 

 

With this function we can extract important features of the calcium oscillations, these important 

features are number of peaks, frequency of peaks, width of half max of the peaks and the height 

of the peaks. Also, we can calculate the average of the parameters of each of the tissues that we 

are analyzing. 

 

2.5. Piezo1 and Yoda1 experiments 

A set of experiments were performed in the wing disc of Drosophila melanogaster involving the 

interaction between the Yoda1 drug and the Piezo1 channel. These experiments are not part of 

this study but were provided by the experimental team of Zartman Lab for their analysis.  

 

The experiments were performed in three genetic lines of Drosophila flies, one without alterations 

in the Piezo1 channels, one with the over expression of this channels, and the final one with the 

knockdown of them by the implementation of the RNAi (interference RNA) called PiezoRNAi. Then 

this fly lines were cultivated in absence of Yoda1 and in presence of Yoda1 (1uM). This generated 

6 different conditions in which we can analyze the interactions of Yoda1 and Piezo1 with the 

calcium dynamics in the wing disc. The images of the calcium activity were taken using a 1-photon 

confocal microscope. 

 

3. Results & Discussion 

 

The principal insight of this program is the facility to generate important analysis from the data 

captured by confocal microscopy and it facilitates the analysis for non-programmer wet biologists. 

 

Several images were analyzed using this pipeline, showing a high put through extraction of the 

parameters that were required joined with a capability to generate important images for the 
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publication of the insights. First, the frequency of oscillation of the components of the wing disc 

of Drosophila melanogaster, this analysis is shown in figure 3.  

From this analysis we can notice that Yoda1 increases the number of components that are 

oscillating and the frequency of them, as we can see from the analysis of the tissue with and 

without yoda1 with no genetic alteration (the ones in the first column), showing that Yoda1 

activates the Piezo1 channels, enhancing the entrance of calcium to the cell, generating more 

oscillation of calcium over time. Also, we can see that, even though the Piezo1 channels are 

inhibited by PiezoRNAi, in the presence of Yoda1 the activity of calcium increases generating the 

components that are detected by the program. Furthermore, we can see that the number of 

components detected in the PiezoRNAi sample is bigger than the one with Piezo1 over expression 

 
 

Figure 3: Frequency analysis of the components detected by the program CaImAn. The 
components detected are represented by the dots. The frequency of said components is 
represented by the color of them, following the color scheme that is shown in the color bar 
on the right. Each picture was taken using a confocal 1-photon microscope. 
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sample, elucidating some kind of interaction between Yoda1 and the increased number of Piezo1 

Channels that inhibits the activity of calcium oscillations. 

 

Other types of analysis can be generated, figure 4 shows the mathematical analysis of the effects 

of Yoda1 over time in a sample with normal expression of Yoda1. 

 

 

In figure 4, we can see that the activity of Piezo1 channels increases over time, having a peak at 

60 minutes. But at 90 minutes we can see no activity of calcium, showing that the effect of Yoda1 

over the Piezo1 channels do not function during great time spans. We can see then that the activity 

of Yoda1 increases over time until it reaches a peak, then it decreases rapidly until there is no 

more calcium activity. 

 

 
 

Figure 4: Box plot of the frequency of oscillation of calcium over different time points. The 
frequency extraction of the tissue was performed by analyzing images that were taken 30 
minutes after cultivation, 60 minutes after cultivation and 90 minutes after cultivation. The 
last column does not present points because the CaImAn program didn’t detect any 
component that presented calcium activity.   
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4. Conclusion 

We have shown the capability of the pipeline generated to analyze calcium images. From the 

analysis developed and the data extracted we can generate figures to communicate the insights 

that the experiments uncover. Specifically, here we have analyzed the experiment of effect of 

Yoda1 over the Piezo1 channels in the wing disc of D. melanogaster, and from the images 

generated from the data extracted with the pipeline and the capabilities of the package matplotlib 

(Hunter, 2007), we can generate deep analysis of what is happening in the tissue thanks to the 

quantitative data. This shows the importance of the tool generated because it will enable wet 

scientist to generate data analysis without the necessity of having computational skills.  

 

Further work is yet needed in this area due to the lack of tools that analyze phenomena in non-

neuron like cells because the software used, CaImAn, could generate the analysis because the cell 

shape of the cells that compose the wing disc are like neurons. But, in cells with a morphology that 

differs a lot from neurons the analysis pipeline might fail, this is the case of plant cells. A further 

study in this area is needed, and the necessity of tools that attain the problem of cell segmentation 

joined with source extraction in plant cells is high. Other tools that are needed in this area are 

tools that can analyze calcium waves in tissue or cells, this is important that is has been shown 

that this waves are important in different processes, for example organ growth (Soundarrajan et 

al., 2021). 

(Faulkner & Contributor, 2018) 
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